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1. INTRODUCTION

Given the interval 7 = [—1, 1] and the space C*({) consisting of the k-
times continuously differentiable real-valued functions. Further, we provide
C*(I) with the norm || - ||; , which for a given f'e C*(I) is defined by

11l := jmax (sup [ f*(x))),
=TS xel

where f ) is the «th derivative of f.
For an arbitrary nodal matrix M = {xy,..., X,,"},.ny We consider the
Hermite interpolation operators (e.g., Natanson [2])

Hypiy 1 CHI)— CYI).
It is known that the convergence
lim || f — Hansaflh = O (1.1)

does not hold for each fe C*I) (cf. Esser and Scherer [1], Pottinger [4]).
This raises the question for which classes of functions one can prove the
convergence formula (1.1). We investigate this problem for the special case
that the nodal matrix M consists of the Tchebycheffl nodes. It turns out that
the convergence property depends on the norms of the Hermite interpolation
operators Hy,,; . Theorem 1 states that the growth of the operator norms is
of order n. This estimation can not be improved (cf. [3]). With the aid of
Theorem 1 we establish a convergence property in Theorem 2.
Some parts of the theory given in this paper have been established in [5].
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2. SoME ESTIMATIONS AND CONVERGENCE PROPERTIES

In the following we take as interpolation nodes the roots x, = cos 6,1
with @, = ((2u 4 D2 - (n + 1)) -7 (0 < p < n) of the Tchebychefl poly-
nomials. Then the Hermite interpolation operators H,,., : C{I)— CYI)
are defined by (e.g., Natanson [2])

”

Hypa f(X) 1= 3 vfx) - L3x) - fx,)

u=0

Y x) LA ) (fe CD)

=0
with
cos @,
v(x):i=1~— Sn* 6. (x — x,)
and
L) (—1* cos(n+1)O -5in G, (x = c0s 0,0 < & < m),

n+1 cos @ — cos 6,

We first have to prove some estimations. To this end, we define the con-
tinuous functions 4, , B, , and C,, for x € I by

& s 6| .
An(x) = M'SIHQM'|I‘LXI,
() .Z‘o sin © )
Bn(x)::il—c:q%@ﬂx—xuklu”(x) (x=cos @0 <O <m),
S, sin? O,

n H @ «‘
Cyi= 3 1IN D OL LS Pl i — w1 100

u=0

LemMa 1. The following estimations hold true, when n runs to infinity:
(@) 4zl = O(m),
(b) |l Bully = O(logn),
© ICully = Om).

Proof. Using the formula for I, and the estimation || 3. _, | L, [l, =
O(log n) (e.g., Natanson [2]) one can easily prove the parts (b) and (c). To

[T L]

1 We will omit the upper index “n.
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derive the estimation for 4, we first consider the case that we have sin
O > n12 (x = cos O, 0 < @ < 7). Then we obtain

A (x) < /2 Z [L(x) < c-nt2-log(n + 1)  (e.g. Natanson [2]),

where the constant ¢ does not depend on x. For sin ® < n~1/2 we get

An(x,) =1
and

A, (%) < Z (n+1)-sin@,-|L(x) ® +# 6,
sin? &, - | cos(n + 1) @ |
| cos @ — cos @, |

M=

u=0

n
<X

u=0

sm@, |sin® —sin®,|-|cos(n + 1) O|
[cos @ — cos 6, |

2 sin @, -sin®-|cos(n + 1) O |
+u§0 | cos @ — cos O, |

= an(x) + an(X).

This yields

- _ wsin®,-sinO-|cos(n + 1) O |
AHx) = z_:o cos @ — cos O, |

I n
< n,j/z Z | LX) < d-n72-logn + 1)

with a constant 4, which is independent of x.
For A, we get

- 2, (sin ®, + sin O) - | sin @, — sin O |
1 ) u

Al < X fcos ® — cos O, |

n=0
n sin@+@“-sin@_@“-cos@+@“-cos@_@“
2.3 2 2 ) 2
u=0 sin@+@“-sin@_@“
2 2
<2n+ 1),

what concludes our proof. [
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By || Hy, 4 || we denote the operator norm of H,,,, , which belongs to the
given || - li; on C'(I). In [3] it was proved that || H,,,, || == 2r — 4. Now we
derive an upper bound for || Hy, 4 || :

THEOREM 1. The estimation
| Hypsr Il = O(n) (n — o0)
holds true.
Proof. For fe C(I) with || f|l; = 1| one easily veryfies
| Hansrfllo < 5.

Because of

Y 0,(x) - L2Ax) =1, for each x e I,

=0

we get for fe CY(I)

n

Honiif(x) — f(x) = 3, 0.(%) - L) - (f(x) — f(x)

u=0

£ Y- ) L )

= i 0,(%) - LA(x) - (Lx“ (@ dt)

u=0

- i (xr = x,) - LHx) - f1(x)

u=0

By differentiation we obtain for fe CX(/) with || f]; = 1
Hinf) ) = 3 00120 ([ 110 )
+20 % 000 100 00 ([ o @)
£20 3 00— %) L0000 5

¥ L) - f(x)
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and

(HaiafY ) < 310009 - 1200 - (¥ — )

1203 1 L@ L - G - )

M=

123 I — %) A6 LG+ Y L),

u=0

Further, we have
Yol v(x) - LAx) - (x — x,)| = By(x)  (cf. Lemma 1).
u=0

Because of

1
cos ® — cos O,

sin(n + 1) ©
sin

L(x) = : ((—1)~ -sin O, -

- u(x))’
(x =c08 0,0 <O ),

we obtain

0,00 - L) - [0 - O — )

u=0

||M:

I(x—x) L(x) - L)l

- Z o — x|

<2 éﬂi—sm%%)—@'sin 6, 1L +2- 3 1w
e REEPAR RS
A

=2 A,(x) + Bu(x) + Cp(x) + 2 - i L4 x) (cf. Lemma 1)

=0

640/23/3-7
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and—as was proved above—

310 — x) - L) - L < Aa() + 3 L),
u=0

u=0
Summarizing these estimations we get with the aid of Lemma 1

| Hepsallh = O()  (n— o0),

since ZLO LAx)<2. O

For a given fe CY(I) we define the approximation constants E,(f) and
EJ'(f) by

E(fy:=f If—mllh, EXP:=Iof |f— iy,
where I1, is the space polynomials of degree <(n. Further, we get
ENf) = Epa(f)
Because of the estimation

”f“ H2n+1f”1 < (H H2n+1 I+ 1) ' E21n+1(f)

we obtain the following convergence property:

THEOREM 2. (a) For a given f € C¥I) we have
ll_g} If — Henaf1h = 0.
() IffeCHI) (k = 3), we get
1
If = Hoaflh = O () (n—> o).

(¢) For fe C¥I) (k = 2) with f* € Lip (0 < a < 1) we obtain

|f — Hepyaflh = O (Wal_a:?) (n — ).
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